

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of Science in Applied Mathematics and Statistics			
QUALIFICATION CODE:	07BSAM	LEVEL:	5
COURSE CODE:	LIA502S	COURSE CODE:	LINEAR ALGEBRA 1
SESSION:	NOVEMBER 2022	PAPER:	THEORY
DURATION:	3 HOURS	MARKS:	100

FII	RST OPPORTUNITY EXAMINATION QUESTION PAPER
EXAMINER:	MR. GS MBOKOMA, DR. N CHERE
MODERATOR:	DR. DSI IIYAMBO

INSTRUCTIONS

- 1. Attempt all the questions in the booklet provided.
- 2. Show clearly all the steps used in the calculations.
- 3. All written work must be done in black or blue inked, and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 2 PAGES (Including this front page)

Question 1

1.1 Let u = 2i + 2j + 3k and v = -i + j + 4k.

- a) Find the unit vector $\hat{\mathbf{u}}$ in the direction of \mathbf{u} . [4]
- b) Find the projection vector of **u** onto **v**. [6]
- b) Find the angle (in degrees) between u and v. Give you answer correct to 2 d.p. [7]
- 1.2 Determine the area of parallelogram whose adjacents sides are $\mathbf{a} = 2\mathbf{i} 4\mathbf{j} + 5\mathbf{k}$ and $\mathbf{b} = \mathbf{i} 2\mathbf{j} 3\mathbf{k}$. Leave your answer in surd form. [5]
- 1.3 If A and B are vectors, then show that $(A B) \times (A + B) = 2(A \times B)$ [5]

Question 2

2.1 Let A be a square matrix and let

$$S = \frac{1}{2}(A + A^T)$$
 and $P = \frac{1}{2}(A - A^T)$.

- a) Find S+P. [3]
- b) Show that S is symmetric and P is skew-symmetric. [6]
- c) If A is symmetric, then show that S = A and P = 0. [4]
- **2.2** Consider the matrix $A = \begin{pmatrix} -1 & 1 & 2 \\ 3 & 0 & -5 \\ 1 & 7 & 2 \end{pmatrix}$.
 - a) Use the Cofactor expansion method along the second column to evaluate the determinant of A. [7]
 - b) Is A invertible? If it is, Use the Gauss-Jordan Elimination method to find A^{-1} . [14]
 - c) Find det $(3(2A)^{-1})$. [6]

Question 3

Determine whether or not the vector (-1,1,5) is a linear combination of the vectors (1,2,3), (0,1,4) and (2,3,6).

Question 4

Let $W = \{(x, y, z) \in \mathbb{R}^3 | 3y + 2z = 0\}.$

- a) Verify that W is a subspace of \mathbb{R}^3 . [12]
- b) Find a basis for W.